Multivariate nonparametric regression using lifting

نویسندگان

  • Maarten Jansen
  • Guy P. Nason
  • Bernard W. Silverman
چکیده

For regularly spaced one-dimensional data wavelet shrinkage has proven to be a compelling method for nonparametric function estimation. We argue that this is not the case for irregularly spaced data in two or higher dimensions. This article develops three methods for the multiscale analysis of irregularly spaced data based on the recently developed lifting paradigm by “lifting one coefficient at a time”. The concept of scale still exists within these transforms but as a continuous quantity rather than dyadic levels. We develop empirical Bayes methods that take account of the continuous nature of the scale. We apply our new methods to the problems of estimation of krill density and rail arrival delays. We demonstrate good performance in a simulation study on new two-dimensional analogues of the well-known Blocks, Bumps, Doppler and Heavisine and a new piecewise linear function called maartenfunc.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A 'nondecimated' lifting transform

Classical nondecimated wavelet transforms are attractive for many applications. When the data comes from complex or irregular designs, the use of second generation wavelets in nonparametric regression has proved superior to that of classical wavelets. However, the construction of a nondecimated second generation wavelet transform is not obvious. In this paper we propose a new ‘nondecimated’ lif...

متن کامل

Nonparametric multivariate conditional distribution and quantile regression

In nonparametric multivariate regression analysis, one usually seeks methods to reduce the dimensionality of the regression function to bypass the difficulty caused by the curse of dimensionality. We study nonparametric estimation of multivariate conditional distribution and quantile regression via local univariate quadratic estimation of partial derivatives of bivariate copulas. Without restri...

متن کامل

Estimating the error distribution in nonparametric multiple regression with applications to model testing

In this paper we consider the estimation of the error distribution in a heteroscedastic nonparametric regression model with multivariate covariates. As estimator we consider the empirical distribution function of residuals, which are obtained from multivariate local polynomial fits of the regression and variance functions, respectively. Weak convergence of the empirical residual process to a Ga...

متن کامل

Mann - Withney multivariate nonparametric control chart.

In many quality control applications, the necessary distributional assumptions to correctly apply the traditional parametric control charts are either not met or there is simply not enough information or evidence to verify the assumptions. It is well known that performance of many parametric control charts can be seriously degraded in situations like this. Thus, control charts that do not requi...

متن کامل

A Class of Nonparametric Volatility Models: Applications to Financial Time Series

In this paper, we first examine several volatility models in the literature. We then estimate financial volatility using multivariate adaptive regression splines (MARS) by logarithmic transformation as a preliminary analysis to examine a nonparametric volatility model. Despite its popularity, MARS has never been applied to model financial volatility. To implement the MARS methodology in a time ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004